Given a random text over a finite alphabet, we study the frequencies at which fixed-length words occur as subsequences. As the data size grows, the joint distribution of word counts exhibits a rich asymptotic structure. We investigate all linear combinations of subword statistics, and fully characterize their different orders of magnitude using diverse algebraic tools. Moreover, we establish the spectral decomposition of the space of word statistics of each order. We provide explicit formulas for the eigenvectors and eigenvalues of the covariance matrix of the multivariate distribution of these statistics. Our techniques include and elaborate on a set of algebraic word operators, recently studied and employed by Dieker and Saliola (Adv Math, 2018). Subword counts find applications in Combinatorics, Statistics, and Computer Science. We revisit special cases from the combinatorial literature, such as intransitive dice, random core partitions, and questions on random walk. Our structural approach describes in a unified framework several classical statistical tests. We propose further potential applications to data analysis and machine learning.
翻译:使用一个限定字母的随机文本, 我们研究固定长度单词作为子序列出现的频率。 随着数据规模的增大, 单词点数的共同分布呈现出丰富的无症状结构。 我们调查子字统计的所有线性组合, 并使用多种代数工具充分描述其不同数量级。 此外, 我们建立每个顺序单词统计空间的光谱分解。 我们为这些统计数据的多变分布的变量矩阵的易分解和异常值提供了明确的公式。 我们的技术包括并详细介绍了一套代克尔和萨洛拉最近研究并使用的代数字操作器( Adv Math, 2018)。 子字数数在组合、 统计和计算机科学中找到应用。 我们重新研究组合文献中的特例, 如不透明 dice、 随机核心分区和随机行走方式问题。 我们的结构方法在一个统一的框架中描述了几个典型的统计测试。 我们提出了数据分析和机器学习的进一步潜在应用 。