Statistical modelling for massive spatial data sets has generated a substantial literature on scalable spatial processes based upon a likelihood approximation proposed by Vecchia in 1988. Vecchia's approximation for Gaussian process models enables fast evaluation of the likelihood by restricting dependencies at a location to its neighbours. We establish inferential properties of microergodic spatial covariance parameters within the paradigm of fixed-domain asymptotics when they are estimated using Vecchia's approximation. The conditions required to formally establish these properties are explored, theoretically and empirically, and the effectiveness of Vecchia's approximation is further corroborated from the standpoint of fixed-domain asymptotics. These explorations suggest some practical diagnostics for evaluating the quality of the approximation.
翻译:大量空间数据集的统计建模产生了大量关于基于Vecchia1988年提出的可能近似值的可扩展空间过程的文献。Vecchia对Gaussian过程模型的近似值通过限制一个地点的相依性,能够快速评估可能性。我们在使用Vecchia的近近似值估算固定场点时,在固定场点空间常变参数范式范围内,确定微电子空间常变参数的推论特性。从固定场点的无序学角度探讨正式确定这些特性所需的条件,并从理论和经验角度进一步证实Vecchia的近似值的有效性。这些探索表明,在评估近似值质量时,可以进行一些实际的诊断。