We study the linear quadratic Gaussian (LQG) control problem, in which the controller's observation of the system state is such that a desired cost is unattainable. To achieve the desired LQG cost, we introduce a communication link from the observer (encoder) to the controller. We investigate the optimal trade-off between the improved LQG cost and the consumed communication (information) resources, measured with the conditional directed information, across all encoding-decoding policies. The main result is a semidefinite programming formulation for that optimization problem in the finite-horizon scenario, which applies to time-varying linear dynamical systems. This result extends a seminal work by Tanaka et al., where the only information the controller knows about the system state arrives via a communication channel, to the scenario where the controller has also access to a noisy observation of the system state. As part of our derivation to show the optimiality of an encoder that transmits a memoryless Gaussian measurement of the state, we show that the presence of the controller's observations at the encoder can not reduce the minimal directed information. For time-invariant systems, where the optimal policy may be time-varying, we show in the infinite-horizon scenario that the optimal policy is time-invariant and can be computed explicitly from a solution of a finite-dimensional semidefinite programming. The results are demonstrated via examples that show that even low-quality measurements can have a significant impact on the required communication resources.


翻译:我们研究线性二次曲线高斯天文(LQG)控制问题, 控制器对系统状态的观察结果就是无法实现理想的成本。 为了实现理想的 LQG 成本, 我们从观察器( 编码器) 向控制器引入了一个通信链接。 我们调查了改进的 LQG 成本和消耗的通信(信息)资源之间的最佳权衡, 在所有编码解码政策中, 以有条件导导导导导导信息来衡量。 主要结果是, 控制器对系统状态的观测结果是, 最优化问题的半确定性编程配方, 适用于时间变化线性线性动态系统。 这个结果扩展了Tana 等人的原始工作, 在那里, 控制器唯一知道系统状态的信息是通过通信渠道到达的, 控制器也可以对系统状态进行杂乱的观察。 作为我们推断的一部分, 显示一个能传递不记忆性高斯天文状态测量结果的编码的精度。 我们显示, 控制器的观测结果在时间变化式线性线性动态系统中的低度, 能够通过精确度显示一个最精确的精确的精确度, 我们的定式政策在最精确的假设中显示, 。

0
下载
关闭预览

相关内容

【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年11月17日
Arxiv
3+阅读 · 2018年8月17日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关VIP内容
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员