In education and intervention programs, user engagement has been identified as a major factor in successful program completion. Automatic measurement of user engagement provides helpful information for instructors to meet program objectives and individualize program delivery. In this paper, we present a novel approach for video-based engagement measurement in virtual learning programs. We propose to use affect states, continuous values of valence and arousal extracted from consecutive video frames, along with a new latent affective feature vector and behavioral features for engagement measurement. Deep-learning sequential models are trained and validated on the extracted frame-level features. In addition, due to the fact that engagement is an ordinal variable, we develop the ordinal versions of the above models in order to address the problem of engagement measurement as an ordinal classification problem. We evaluated the performance of the proposed method on the only two publicly available video engagement measurement datasets, DAiSEE and EmotiW-EW, containing videos of students in online learning programs. Our experiments show a state-of-the-art engagement level classification accuracy of 67.4% on the DAiSEE dataset, and a regression mean squared error of 0.0508 on the EmotiW-EW dataset. Our ablation study shows the effectiveness of incorporating affect states and ordinality of engagement in engagement measurement.
翻译:在教育和干预方案中,用户参与被确定为成功完成方案的一个主要因素。用户参与的自动计量为教员提供了有用的信息,以达到方案目标和使方案交付个性化。在本文件中,我们提出了虚拟学习方案中基于视频参与的计量新颖方法。我们提议使用影响状态、持续价值和从连续视频框中提取的振奋,以及新的潜在影响特性矢量和行为特征,以衡量参与情况。深层学习的连续模式在提取的框架级特征上得到了培训和验证。此外,由于参与是一个正统变量,我们开发了上述模式的正本版本,以解决虚拟学习方案中的接触计量问题,将其作为一个分级分类问题。我们评价了仅两个公开提供的视频参与计量数据集DAiSEEE和EmotiW-EW的拟议方法的绩效,其中载有在线学习方案学生的视频。我们的实验显示,DAISEE数据集中,67.4%的接触水平分类为67.4%的状态,而E.0508或EM.W.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.