Colloidal quantum dots are robust, efficient, and tunable emitters now used in lighting, displays, and lasers. Consequently, when the spaser, a laser-like source of surface plasmons, was first proposed, quantum dots were specified as the ideal plasmonic gain medium. Subsequent spaser designs, however, have required a single material to simultaneously provide gain and define the plasmonic cavity, an approach ill-suited to quantum dots and other colloidal nanomaterials. Here we develop a more open architecture that decouples the gain medium from the cavity, leading to a versatile class of quantum-dot-based spasers that allow controlled generation, extraction, and manipulation of plasmons. We first create high-quality-factor, aberration-corrected, Ag plasmonic cavities. We then incorporate quantum dots via electrohydrodynamic printing18,19 or drop-casting. Photoexcitation under ambient conditions generates monochromatic plasmons above threshold. This signal is extracted, directed through an integrated amplifier, and focused at a nearby nanoscale tip, generating intense electromagnetic fields. This spaser platform, deployable at different wavelengths, size scales, and geometries, can enable more complex on-chip plasmonic devices.


翻译:串流量子点是坚固、高效的, 以及目前用于照明、 显示和激光的金枪鱼散射器。 因此, 当首次提出质子点时, 量子点被指定为理想的质谱增益介质。 然而, 随后的质子设计需要单种材料来同时提供增益和定义质谱胆固度, 一种不适合于量子点和其他碳酸纳米材料的方法。 在这里, 我们开发了一个更开放的架构, 使从碳化中获取的介质分脱落, 导致一个量子点基温的多功能型微波炉, 允许受控的生成、 提取和操作质谱质谱增量。 我们首先创建高质谱、 偏差校正、 Ag 质孔等。 我们随后通过电流流流力打印18、 19 或投影性投影, 而在环境条件下, 光解产生单色谱质介质质介质介质介质介质介质介质介质, 导致一个基于量多功能级的质多功能级级级级的质- 。 这个信号通过集、 直径、 直径的磁层平台、 生成、 、 级、 级、 制成、 、 级、 级、 级、 级、 级、 、 、 级、 级、 级、 、 制成型、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 、 级、 级、 级、 级、 级、 级、 级、 级、 、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Diganta Misra等人提出新激活函数Mish,在一些任务上超越RuLU
专知会员服务
14+阅读 · 2019年10月15日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
4+阅读 · 2018年4月30日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员