We present a new, inductive construction of the Vietoris-Rips complex, in which we take advantage of a small amount of unexploited combinatorial structure in the $k$-skeleton of the complex in order to avoid unnecessary comparisons when identifying its $(k+1)$-simplices. In doing so, we achieve an order-of-magnitude speedup over current algorithms when constructing the clique complexes of Erd\H{o}s-R\'enyi graphs.
翻译:我们展示了越南-里普斯综合体的一种新的感性结构,我们利用该综合体中一小撮未开发的组合结构,在确定其$(k+1)的不简单时避免不必要的比较。 通过这样做,我们在构建Erd\H{o}s-R\'enyi 图表的分类组合时,实现了比当前算法更高的压强速度。