In this paper, we introduce the concept of a \emph{type graph}, namely a bipartite graph induced by a joint type. We study the maximum edge density of induced bipartite subgraphs of this graph having a number of vertices on each side on an exponential scale. This can be seen as an isoperimetric problem. We provide asymptotically sharp bounds for the exponent of the maximum edge density as the blocklength goes to infinity. We also study the biclique rate region of the type graph, which is defined as the set of $\left(R_{1},R_{2}\right)$ such that there exists a biclique of the type graph which has respectively $e^{nR_{1}}$ and $e^{nR_{2}}$ vertices on two sides. We provide asymptotically sharp bounds for the biclique rate region as well. We then apply our results and proof ideas to noninteractive simulation problems. We completely characterize the exponents of maximum and minimum joint probabilities when the marginal probabilities vanish exponentially fast with given exponents. These results can be seen as strong small-set expansion theorems. We extend the noninteractive simulation problem by replacing Boolean functions with arbitrary nonnegative functions, and obtain new hypercontractivity inequalities which are stronger than the common hypercontractivity inequalities. Furthermore, as an application of our results, a new outer bound for the zero-error capacity region of the binary adder channel is provided, which improves the previously best known bound, due to Austrin, Kaski, Koivisto, and Nederlof. Our proofs in this paper are based on the method of types, linear algebra, and coupling techniques.
翻译:在本文中, 我们引入了 \ emph{ type Grap} 的概念, 即由共同类型引导的双叶图 。 我们研究此图中导出双叶子子图的最大边缘密度, 以指数规模在每侧都有数个脊椎。 这可以被视为一个等离子测量问题 。 当最大边缘密度进入宽度时, 我们为最大边缘密度的亮度提供无边的界限。 我们还研究类型图中的双球率区域, 定义为 $left (R ⁇ 1}, R ⁇ 2 ⁇ right ) 的集合性区域 。 我们研究该类型图的双球率区域, 定义为 $left( left) (R ⁇ 1}, R ⁇ 2 ⁇ right) 的集合值区域 。 这个类型的图类型的最大边缘边缘边缘边缘偏差分数, 双螺旋值为双向宽度区域提供了无边际的亮度界限。 我们然后将我们的结果运用于非交互性模拟的双曲线区域。 我们完全描述了最大和最小联合性准度应用的非共振度区域, 。 当我们刚度的极分数的极分法性变变变法性变法性变变变法性变法性变法性变法,,, 我们的极性变法性变法性变法性变法性变法性变法性变法性变法性变法性变法性变法性变法, 变变法, 变法能的极性变法, 变法性变法性变法性变法性变法性变法, 变法性变法性变法性变法性变法性变法性变法性变法性变法, 变法性变法性变法性变法性变法性变法性变法性变法, 变法性变法性变法性变法性变法性变法性变法性变法性变法性变法性变法性变法性变法性变法性变法性变法性变法性变法性变法性变法性变法性变法性变法性变法性变法性变法性变法性变法性变法性变法性变法性变法