The trade-off between the two types of errors in binary state discrimination may be quantified in the asymptotics by various error exponents. In the case of simple i.i.d. hypotheses, each of these exponents is equal to a divergence (pseudo-distance) of the two states. In the case of composite hypotheses, represented by sets of states $R,S$, one always has the inequality $\mathrm{e}(R\|S)\le \mathrm{E}(R\|S)$, where $\mathrm{e}$ is the exponent, $\mathrm{E}$ is the corresponding divergence, and the question is whether equality holds. The relation between the composite exponents and the worst pairwise exponents may be influenced by a number of factors: the type of exponents considered; whether the problem is classical or quantum; the cardinality and the geometric properties of the sets representing the hypotheses; and, on top of the above, possibly whether the underlying Hilbert space is finite- or infinite-dimensional. Our main contribution in this paper is clarifying this landscape considerably: We exhibit explicit examples for hitherto unstudied cases where the above inequality fails to hold with equality, while we also prove equality for various general classes of state discrimination problems. In particular, we show that equality may fail for any of the error exponents even in the classical case, if the system is allowed to be infinite-dimensional, and the alternative hypothesis contains countably infinitely many states. Moreover, we show that in the quantum case strict inequality is the generic behavior in the sense that, starting from any pair of non-commuting density operators of any dimension, and for any of the exponents, it is possible to construct an example with a simple null-hypothesis and an alternative hypothesis consisting of only two states, such that strict inequality holds for the given exponent.
翻译:二元制歧视中两种类型的错误之间的权衡,可以用各种错误来量化。在简单i.d.d.假设中,这两种推论的利弊都等于两个州的差异(假冒距离)。在以一组国家为代表的复合假设(美元,S$)中,一个总是有不平等(美元),一个是不平等(美元),一个是不平等(美元),一个是非正数(美元),美元(美元)不是正数(美元),一个是正数(美元),一个是非正数(美元),美元(美元)是直数(美元),一个非正数(美元),一个非正数(美元)是直数(美元),一个非正数(美元)是正数(美元),一个是相对直数(美元),一个问题(美元)和最差数(美元),一个比数(美元),一个比数(美元),一个比数(美元),一个比数(美元),一个数(美元),一个直数(美元),一个直数(美元),一个直数(美元)是直数(美元),一个直数(美元)是直数(美元),一个非正数(美元)是正数(美元),一个非正数(美元)是正数(美元),另一个(美元)是正数(美元)是正数(美元)是正数(美元)是正数(美元)是正数(美元)是正数(美元),一个,一个比(美元)是正数(美元)是正数(美元)是正数(美元),一个比(美元),一个直)。(美元)是正数(美元)是正数(美元)是正数(美元)是正数(美元)是正数(美元)(美元)是正数(美元),一个(美元)是正数(美元),一个(美元)是正数(美元)是正数(美元)是正数(美元),一个相对),一个直)是正数(美元)的利)是直数(美元)是正数(美元),一个比(美元)的利)是正数(美元),一个比(美元)是直数(或比(美元)是直),一个比(