Motivated by recent progress on stochastic matching with few queries, we embark on a systematic study of the sparsification of stochastic packing problems (SPP) more generally. Specifically, we consider SPPs where elements are independently active with a probability p, and ask whether one can (non-adaptively) compute a sparse set of elements guaranteed to contain an approximately optimal solution to the realized (active) subproblem. We seek structural and algorithmic results of broad applicability to such problems. Our focus is on computing sparse sets containing on the order of d feasible solutions to the packing problem, where d is linear or at most poly. in 1/p. Crucially, we require d to be independent of the any parameter related to the ``size'' of the packing problem. We refer to d as the degree of the sparsifier, as is consistent with graph theoretic degree in the special case of matching. First, we exhibit a generic sparsifier of degree 1/p based on contention resolution. This sparsifier's approximation ratio matches the best contention resolution scheme (CRS) for any packing problem for additive objectives, and approximately matches the best monotone CRS for submodular objectives. Second, we embark on outperforming this generic sparsifier for matroids, their intersections and weighted matching. These improved sparsifiers feature different algorithmic and analytic approaches, and have degree linear in 1/p. In the case of a single matroid, our sparsifier tends to the optimal solution. For weighted matching, we combine our contention-resolution-based sparsifier with technical approaches of prior work to improve the state of the art ratio from 0.501 to 0.536. Third, we examine packing problems with submodular objectives. We show that even the simplest such problems do not admit sparsifiers approaching optimality.
翻译:以近期在与少数问题相匹配的随机匹配方面的最新进展为动力, 我们开始对随机包装问题( SPP) 的广度问题进行系统化研究。 具体地说, 我们考虑的是元素独立活跃的 SPP, 与概率 p, 并询问是否( 非适应性) 能够计算出一组稀多元素, 保证含有对已实现( 激活) 子问题最优化的解决方案。 我们寻求广泛适用于此类问题的结构性和算法结果 。 我们的重点是计算含有对包装问题可行解决方案的稀多数据集, 其中, d 是线性或最多元的 。 在 1/ p 中, 我们考虑的是 SPPP 。 。 具体地说, 我们考虑的是, 我们考虑的是 与 " 缩放量" 有关的任何参数独立独立 。 我们引用的是, 与 直径直径直的 1/ p 质 问题 。 我们首先, 我们展示了一种通用的 度 1/ 级化 。 在争议解 中, 将 最优调的 方法与最清晰的解的解解( CRS), 直线性 标定的 方法结合起来,, 用于任何修正的 质标定的, 标定的, 质的 质标定的, 质定的 质的 质定的 质定的, 质标定的 标定的 标定的 。