This paper investigates the optimality conditions for characterizing the local minimizers of the constrained optimization problems involving an $\ell_p$ norm ($0<p<1$) of the variables, which may appear in either the objective or the constraint. This kind of problems have strong applicability to a wide range of areas since usually the $\ell_p$ norm can promote sparse solutions. However, the nonsmooth and non-Lipschtiz nature of the $\ell_p$ norm often cause these problems difficult to analyze and solve. We provide the calculation of the subgradients of the $\ell_p$ norm and the normal cones of the $\ell_p$ ball. For both problems, we derive the first-order necessary conditions under various constraint qualifications. We also derive the sequential optimality conditions for both problems and study the conditions under which these conditions imply the first-order necessary conditions. We point out that the sequential optimality conditions can be easily satisfied for iteratively reweighted algorithms and show that the global convergence can be easily derived using sequential optimality conditions.
翻译:本文调查了将限制优化问题的当地最小化因素定性为最优化问题的最佳条件, 这些问题可能出现在目标或制约中。 此类问题对一系列广泛的领域非常适用, 因为通常美元标准可以促进稀疏的解决办法。 然而, 美元标准的非吸附和非Lipschtiz 性质往往使这些问题难以分析和解决。 我们提供了$ ell_ p$ 规范的子梯度和$\ ell_ p$ 球的普通锥体的计算结果。 对于这两个问题,我们在各种制约条件下得出第一阶必备条件。 我们还为这两个问题得出顺序最佳条件,并研究这些条件意味着第一阶必备条件的条件。 我们指出, 迭代再加权算法的顺序最佳性条件很容易得到满足, 并表明全球趋同很容易使用顺序最优条件得出。