The shortest path problem is a class of classical problems in graph theory and has a wide range of application scenarios. At present, the parallel single-source shortest path algorithm is mainly used to solve the all-pair shortest path problem. We propose a new all-pair shortest path algorithm based on block matrix multiplication via GPUs. The novel algorithm transforms the shortest path problem into the linear algebra problem, taking advantage of the GPUs' performance advantage in this regard. On sparse graphs, the new algorithm has an average of 2.35x compared to the parallel Dijsktra algorithm and an average of 1500x on the dense graphs.
翻译:最短路径问题是一个古老的图形理论问题,具有广泛的应用设想方案。 目前,平行的单一源码最短路径算法主要用于解决全帕最短路径问题。 我们提出一个新的全帕最短路径算法,其基础是通过GPUs的区块矩阵乘法。 新的算法利用GPUs在这方面的性能优势,将最短路径问题转化为线性代数问题。 在稀疏的图表中,新的算法与平行的Dijsktra算法相比平均为2.35x,而密度图形则平均为1500x。