In synthetic computability, pioneered by Richman, Bridges, and Bauer, one develops computability theory without an explicit model of computation. This is enabled by assuming an axiom equivalent to postulating a function $\phi$ to be universal for the space $\mathbb{N}\to\mathbb{N}$ ($\mathsf{CT}_\phi$, a consequence of the constructivist axiom $\mathsf{CT}$), Markov's principle, and at least the axiom of countable choice. Assuming $\mathsf{CT}$ and countable choice invalidates the law of excluded middle, thereby also invalidating classical intuitions prevalent in textbooks on computability. On the other hand, results like Rice's theorem are not provable without a form of choice. In contrast to existing work, we base our investigations in constructive type theory with a separate, impredicative universe of propositions where countable choice does not hold and thus a priori $\mathsf{CT}_{\phi}$ and the law of excluded middle seem to be consistent. We introduce various parametric strengthenings of $\mathsf{CT}_{\phi}$, which are equivalent to assuming $\mathsf{CT}_\phi$ and an $S^m_n$ operator for $\phi$ like in the $S^m_n$ theorem. The strengthened axioms allow developing synthetic computability theory without choice, as demonstrated by elegant synthetic proofs of Rice's theorem. Moreover, they seem to be not in conflict with classical intuitions since they are consequences of the traditional analytic form of $\mathsf{CT}$. Besides explaining the novel axioms and proofs of Rice's theorem we contribute machine-checked proofs of all results in the Coq proof assistant.
翻译:在合成兼容性中, 由 Richman、 Bridges 和 Bauer 率先提出, 在合成兼容性中, 由 Richman 、 Bridges 和 Bauer 所先行, 一个开发可计算性理论, 而没有明确的计算模型。 假设 $\phe$ 和可计算性选择, 将一个功能等同于 $\\ fe$ 的假设, 使该函数为通用 $\\\\\\\\\ mathb{ n\\\ mathb{ n} 美元( $\ mathfrb} 美元( ) ( ) ) 。 与现有工作相比, 我们的调查以建设性类型理论为基础, 一个不具有可计算性选择的不确定性宇宙, 因此, 美元=xxxxx=xx美元( 美元) 和可计算性选择的可计算性选择。 假设 美元- 美元( 美元) 等值 的 和 法 将 直观的直观的直观的直观 解释性( $_xxxxxx) 解释性) 显示, 的可加强 的 。