Overfitting is a common problem in machine learning, which means the model too closely fits the training data while performing poorly in the test data. Among various methods of coping with overfitting, dropout is one of the representative ways. From randomly dropping neurons to dropping neural structures, dropout has achieved great success in improving model performances. Although various dropout methods have been designed and widely applied in past years, their effectiveness, application scenarios, and contributions have not been comprehensively summarized and empirically compared by far. It is the right time to make a comprehensive survey. In this paper, we systematically review previous dropout methods and classify them into three major categories according to the stage where dropout operation is performed. Specifically, more than seventy dropout methods published in top AI conferences or journals (e.g., TKDE, KDD, TheWebConf, SIGIR) are involved. The designed taxonomy is easy to understand and capable of including new dropout methods. Then, we further discuss their application scenarios, connections, and contributions. To verify the effectiveness of distinct dropout methods, extensive experiments are conducted on recommendation scenarios with abundant heterogeneous information. Finally, we propose some open problems and potential research directions about dropout that worth to be further explored.


翻译:机械学习是一个常见的问题,这意味着模型在测试数据中表现不佳时与培训数据过于吻合,在测试数据表现不佳时与培训数据过于吻合。在各种处理过度装配的方法中,辍学是具有代表性的方法之一。从随机投出神经元到投出神经结构,辍学在改善模型性能方面取得了巨大成功。尽管过去几年设计了各种辍学方法,并广泛应用了这些方法,但其有效性、应用情景和贡献并没有得到全面总结和经验方面的比较。现在是进行全面调查的适当时机。在本文中,我们系统地审查以往的辍学方法,并根据实施辍学作业的阶段将其分为三大类。具体地说,在最高AI会议或期刊(例如,TKDE、KDD、ThebConf、SIGIR)上公布的70多种辍学方法都涉及到了。设计中的分类方法很容易理解,而且能够包括新的辍学方法。随后,我们进一步讨论了它们的应用情景、联系和贡献。为了核实不同的辍学方法的有效性,我们用大量不同的信息对建议性假设进行了广泛的实验。最后,我们提出了值得进一步探讨的一些公开的问题和潜在的研究方向。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年4月30日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关VIP内容
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年4月30日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员