In a recent paper by a superset of the authors it was proved that for every primitive 3-constrained space $\Gamma$ of finite diameter $\delta$ from Cherlin's catalogue of metrically homogeneous graphs, there exists a finite family $\mathcal F$ of $\{1,\ldots, \delta\}$-edge-labelled cycles such that a $\{1,\ldots, \delta\}$-edge-labelled graph is a subgraph of $\Gamma$ if and only if it contains no homomorphic images of cycles from $\mathcal F$. However, the cycles in the families $\mathcal F$ were not described explicitly as it was not necessary for the analysis of Ramsey expansions and the extension property for partial automorphisms. This paper fills this gap by providing an explicit description of the cycles in the families $\mathcal F$, heavily using the previous result in the process. Additionally, we explore the potential applications of this result, such as interpreting the graphs as semigroup-valued metric spaces or homogenizations of $\omega$-categorical $\{1,\delta\}$-edge-labelled graphs.
翻译:在最近一篇由作者的超级集证明的论文中,证明了对于Cherlin图表中有限直径为$\delta$的原始3约束空间$\Gamma$,存在一个$\{1,\dots,\delta\}$边标记的环的有限家族$\mathcal{F}$,使得$\{1,\dots,\delta\}$边标记的图是$\Gamma$的子图,当且仅当它不包含来自$\mathcal{F}$的环的同态映射。然而,对于家族$\mathcal{F}$中的环的描述并没有明确说明,因为这并不是分析Ramsey扩展和部分自同构的延伸属性所必需的。本文通过提供家族$\mathcal{F}$中环的明确描述来填补这一空白,过程中严重运用了之前的结果。此外,我们还探讨了这一结果的潜在应用,如将图解释为半群值度量空间或$\omega$-范畴$\{1,\delta\}$-边标记图的齐次化。