Promising solutions exist today that can accurately track mobile entities indoor using visual inertial odometry in favorable visual conditions, or by leveraging fine-grained ranging (RF, ultrasonic, IR, etc.) to reference anchors. However, they are unable to directly cater to "dynamic" indoor environments (e.g. first responder scenarios, multi-player AR/VR gaming in everyday spaces, etc.) that are devoid of such favorable conditions. Indeed, we show that the need for "infrastructure-free", and robustness to "node mobility" and "visual conditions" in such environments, motivates a robust RF-based approach along with the need to address a novel and challenging variant of its infrastructure-free (i.e. peer-to-peer) localization problem that is latency-bounded - accurate tracking of mobile entities imposes a latency budget that not only affects the solution computation but also the collection of peer-to-peer ranges themselves. In this work, we present the design and deployment of DynoLoc that addresses this latency-bounded infrastructure-free RF localization problem. To this end, DynoLoc unravels the fundamental tradeoff between latency and localization accuracy and incorporates design elements that judiciously leverage the available ranging resources to adaptively estimate the joint topology of nodes, coupled with robust algorithm that maximizes the localization accuracy even in the face of practical environmental artifacts (wireless connectivity and multipath, node mobility, etc.). This allows DynoLoc to track (every second) a network of few tens of mobile entities even at speeds of 1-2 m/s with median accuracies under 1-2 m (compared to 5m+ with baselines), without infrastructure support. We demonstrate DynoLoc's potential in a real-world firefighters' drill, as well as two other use cases of (i) multi-player AR/VR gaming, and (ii) active shooter tracking by first responders.


翻译:现如今,有希望的解决方案可以准确跟踪内部移动实体,使用视觉惯性,在有利的视觉条件下,或者利用精细的测距(RF、超声波、IR等)来定位锚定。然而,这些解决方案无法直接满足“动态”室内环境(例如,第一反应器情景、多玩家AR/VR在日常空间进行游戏等),而这些环境没有这种有利的条件。 事实上,我们表明,需要“实际的无基础设施”和“视觉条件”的稳健性在这种环境中“节点流动”和“视觉条件”的“稳健性”,鼓励采用基于RF的稳健性测距方法,同时需要解决其无基础设施(例如,对等对等)的新颖和具有挑战性的变异性(对移动实体的准确性跟踪),这不但影响解决方案的计算,而且影响对同行间测距的测距的测距本身的测距。 在这项工作中,我们展示了DYL的设计和部署, 直径直径直径直的基的电路路路路路路路路路路路路段, 将显示, 直径直径直径直径直径直径直径直基的电的电的电路基基的电路路基基基基基的电路基的电路基基基基基的电路系的电路基基的电路系中, 。

0
下载
关闭预览

相关内容

专知会员服务
43+阅读 · 2021年9月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
5+阅读 · 2018年5月22日
Arxiv
9+阅读 · 2018年3月10日
VIP会员
相关VIP内容
专知会员服务
43+阅读 · 2021年9月15日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员