The evolution of wireless technologies has enabled the creation of networks for several purposes as health care monitoring. The Wireless Body Area Networks (WBANs) enable continuous and real-time monitoring of physiological signals, but that monitoring leads to an excessive data transmission usage, and drastically affects the power consumption of the devices. Although there are approaches for reducing energy consumption, many of them do not consider information redundancy to reduce the power consumption. This paper proposes a hybrid approach of local data compression, called GROWN, to decrease information redundancy during data transmission and reduce the energy consumption. Our approach combines local data compression methods found in WSN. We have evaluated GROWN by experimentation, and the results show a decrease in energy consumption of the devices and an increase in network lifetime.


翻译:无线技术的演进为保健监测等若干目的创造了网络。无线机体区域网络(WBANs)使得能够对生理信号进行连续和实时监测,但监测导致数据传输使用过度,并严重影响设备的电力消耗。尽管有减少能源消耗的办法,但许多无线技术并不认为信息冗余会减少电力消耗。本文建议采用当地数据压缩的混合方法,称为GROWN,以减少数据传输期间的信息冗余,并减少能源消耗。我们的方法结合了在WSN中发现的地方数据压缩方法。我们通过实验对GROWN进行了评估,结果显示这些装置的能源消耗减少,网络寿命增加。

0
下载
关闭预览

相关内容

【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
122+阅读 · 2019年12月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Learning to Importance Sample in Primary Sample Space
Arxiv
6+阅读 · 2016年1月15日
VIP会员
相关资讯
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员