In the search for more efficient and less environmentally harmful cooling technologies, the field of magnetocalorics is considered a promising alternative. To generate cooling spans, rotating permanent magnet assemblies are used to cyclically magnetize and demagnetize magnetocaloric materials, which change their temperature under the application of a magnetic field. In this work, an axial rotary permanent magnet assembly, aimed for commercialization, is computationally designed using topology and shape optimization. This is efficiently facilitated in an isogeometric analysis framework, where harmonic mortaring is applied to couple the rotating rotor-stator system of the multipatch model. Inner, outer and co-rotating assemblies are compared and optimized designs for different magnet masses are determined. These simulations are used to homogenize the magnetic flux density in the magnetocaloric material. The resulting torque is analyzed for different geometric parameters. Additionally, the influence of anisotropy in the active magnetic regenerators is studied in order to guide the magnetic flux. Different examples are analyzed and classified to find an optimal magnet assembly for magnetocaloric cooling.
翻译:寻找更加高效且环保的制冷技术,磁热制冷被认为是一种很有前景的选择。为了生成冷却跨度,采用旋转永磁组件对磁热材料进行周期性磁化和去磁化,使得磁热材料在磁场作用下发生温度变化。本文基于拓扑和形状优化方法,计算设计了一种商业化应用的轴向旋转永磁组件。这一过程得以在等几何分析框架下高效实现,采用谐波处理方法用于耦合构成多块模型的旋转转子-定子系统。比较了内部、外部和同向旋转组件,并且确定了针对不同永磁物质重量的优化设计方案。这些模拟用于均匀化磁热材料中的磁通密度,并对不同的几何参数下所产生的转矩进行了分析。此外,还研究了活性磁再生器中各向异性的作用,以指导磁通的流向。采用不同案例进行分析和分类,找出磁热制冷最优磁组件的构建。