We show for the first time that, under the null hypothesis of vanishing Granger causality, the single-regression Granger-Geweke estimator converges to a generalised $\chi^2$ distribution, which may be well approximated by a $\Gamma$ distribution. We show that this holds too for Geweke's spectral causality averaged over a given frequency band, and derive explicit expressions for the generalised $\chi^2$ and $\Gamma$-approximation parameters in both cases. We present an asymptotically valid Neyman-Pearson test based on the single-regression estimators, and discuss in detail how it may be usefully employed in realistic scenarios where autoregressive model order is unknown or infinite. We outline how our analysis may be extended to the conditional case, point-frequency spectral Granger causality, state-space Granger causality, and the Granger causality $F$-test statistic. Finally, we discuss approaches to approximating the distribution of the single-regression estimator under the alternative hypothesis.
翻译:我们第一次显示,在消失引因因果关系的无效假设下,单反回归Granger-Geweke 估计值与一般的 $\ chi ⁇ 2美元分布相融合,这很可能被 $\ Gamma美元分布所近似。我们显示,这对Geweke 的光谱因果关系在给定的频段中平均持有同样优势,并且为两种情况下的通用 $\ chi ⁇ 2美元和 $\ Gamama$- accession 参数得出清晰的表达。我们提出了一个基于单一反回归估计值的无效的 Neyman-Pearson 测试,并详细讨论在不为未知或无限的自回归模式命令的现实情景下如何有用地使用。我们概述了我们的分析如何扩大到有条件的情况、点频谱Granger 因果关系、 州- 空间引力因果关系和 引力因果关系 $F$- 测试性统计。最后,我们讨论了如何在替代假设下控制单反回归定值分配的方法。