Predicting video viewership is a top priority for content creators and video-sharing sites. Content creators live on such predictions to maximize influences and minimize budgets. Video-sharing sites rely on this prediction to promote credible videos and curb violative videos. Although deep learning champions viewership prediction, it lacks interpretability, which is fundamental to increasing the adoption of predictive models and prescribing measurements to improve viewership. Following the design-science paradigm, we propose a novel interpretable IT system, Precise Wide and Deep Learning (PrecWD), to precisely interpret viewership prediction. Improving upon state-of-the-art frameworks, PrecWD offers precise feature effects and designs an unstructured component. PrecWD outperforms benchmarks in two contexts: health video viewership prediction and misinformation viewership prediction. A user study confirms the superior interpretability of PrecWD. This study contributes to IS design theory with generalizable design principles and an interpretable predictive framework. Our findings provide implications to improve video viewership and credibility.
翻译:预测视频浏览是内容创作者和视频共享网站的首要优先事项; 内容创作者以这种预测为生,以最大限度地扩大影响和尽量减少预算; 视频共享网站依靠这种预测来推广可信的视频和抑制违法视频; 虽然深学习冠军观看预测缺乏解释性,但缺乏解释性,这对于更多地采用预测模型和规定测量方法以改善浏览率至关重要; 根据设计科学范式,我们提议了一个新的可解释的信息技术系统 -- -- 精密和深层学习(PrecWD),以精确解释浏览预测; 改进最新框架,PrecWD提供精确的特征效果,并设计一个非结构化组成部分; PrecWD在两种情况下优于基准:健康视频浏览预测和错误浏览预测; 用户研究确认PrecWD具有较高的解释性; 这项研究有助于具有可通用设计原则和可解释性预测性框架的设计理论。 我们的研究结果为改进视频浏览率和可信度提供了影响。