The integrating factor technique is widely used to solve numerically (in particular) the Schr{\"o}dinger equation in the context of spectral methods. Here, we present an improvement of this method exploiting the freedom provided by the gauge condition of the potential. Optimal gauge conditions are derived considering the equation and the temporal numerical resolution with an adaptive embedded scheme of arbitrary order. We illustrate this approach with the nonlinear Schr{\"o}dinger (NLS) and with the Schr{\"o}dinger-Newton (SN) equations. We show that this optimization increases significantly the overall computational speed, sometimes by a factor five or more. This gain is crucial for long time simulations.
翻译:集成因子技术被广泛用于在光谱方法范围内以数字方式(特别是)解决Schr_'o}dinger等式。在这里,我们展示了利用潜力测量条件所提供的自由来改进这一方法。最佳的量测条件是在考虑公式和时间数字分辨率的同时,用一个适应性的任意顺序嵌入法。我们用非线性Schr_'o}dinger(NLS)和Schr_'o}dinger-Newton(SN)等式来说明这一方法。我们显示,这种优化极大地提高了总体计算速度,有时以5或5倍以上系数计算。这一增益对于长期模拟至关重要。