We consider discrete Schr\"odinger operators with aperiodic potentials given by a Sturmian word, which is a natural generalisation of the Fibonacci Hamiltonian. We introduce the finite section method, which is often used to solve operator equations approximately, and apply it first to periodic Schr\"odinger operators. It turns out that the applicability of the method is always guaranteed for integer-valued potentials provided that the operator is invertible. By using periodic approximations, we find a necessary and sufficient condition for the applicability of the finite section method for aperiodic Schr\"odinger operators and a numerical method to check it.
翻译:我们考虑离散的Schr\'odinger操作员,其周期性潜力由Sturmian一词给出,这是Fibonacci Hamiltonian的自然概括。我们引入了有限部分方法,该方法通常用于大致解析操作员方程式,并首先适用于定期Schr\'odinger操作员。我们发现,如果操作员是不可倒置的,该方法对整数值潜能的适用性总是有保证的。我们通过使用定期近似,发现对定期Schr\'omilsonian操作员适用有限部分方法的必要和充分条件,并找到一种数字方法加以核对。