Recently, transformers have shown great potential in image classification and established state-of-the-art results on the ImageNet benchmark. However, compared to CNNs, transformers converge slowly and are prone to overfitting in low-data regimes due to the lack of spatial inductive biases. Such spatial inductive biases can be especially beneficial since the 2D structure of an input image is not well preserved in transformers. In this work, we present Spatial Prior-enhanced Self-Attention (SP-SA), a novel variant of vanilla Self-Attention (SA) tailored for vision transformers. Spatial Priors (SPs) are our proposed family of inductive biases that highlight certain groups of spatial relations. Unlike convolutional inductive biases, which are forced to focus exclusively on hard-coded local regions, our proposed SPs are learned by the model itself and take a variety of spatial relations into account. Specifically, the attention score is calculated with emphasis on certain kinds of spatial relations at each head, and such learned spatial foci can be complementary to each other. Based on SP-SA we propose the SP-ViT family, which consistently outperforms other ViT models with similar GFlops or parameters. Our largest model SP-ViT-L achieves a record-breaking 86.3% Top-1 accuracy with a reduction in the number of parameters by almost 50% compared to previous state-of-the-art model (150M for SP-ViT-L vs 271M for CaiT-M-36) among all ImageNet-1K models trained on 224x224 and fine-tuned on 384x384 resolution w/o extra data.


翻译:最近,变压器在图像分类方面显示出巨大的潜力,并在图像网络基准上确立了最新艺术成果。然而,与CNN相比,变压器缓慢地聚集,并且由于缺乏空间感化偏差,容易在低数据系统中过度适应低数据系统。这种空间感应偏差可能特别有益,因为输入图像的2D结构在变压器中没有得到很好的保存。在这项工作中,我们展示了空间先期增强的自我感应(SP-SA),这是为视觉变压器量定制的香草38自控(SA)的新版本。与CNN相比,空间感应器(SPs)是我们提议的显示某些空间关系组的感应偏向偏向偏向性偏向。与那些被迫完全专注于硬码本地区域的进动感应偏向偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向偏向性偏向性偏向性偏偏向,因为这种偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏向性偏偏向性偏向性偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏,因为地偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏偏

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月30日
Arxiv
35+阅读 · 2022年3月14日
Arxiv
17+阅读 · 2022年2月23日
Arxiv
14+阅读 · 2021年3月10日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员