Individual mobility is driven by demand for activities with diverse spatiotemporal patterns, but existing methods for mobility prediction often overlook the underlying activity patterns. To address this issue, this study develops an activity-based modeling framework for individual mobility prediction. Specifically, an input-output hidden Markov model (IOHMM) framework is proposed to simultaneously predict the (continuous) time and (discrete) location of an individual's next trip using transit smart card data. The prediction task can be transformed into predicting the hidden activity duration and end location. Based on a case study of Hong Kong's metro system, we show that the proposed model can achieve similar prediction performance as the state-of-the-art long short-term memory (LSTM) model. Unlike LSTM, the proposed IOHMM model can also be used to analyze hidden activity patterns, which provides meaningful behavioral interpretation for why an individual makes a certain trip. Therefore, the activity-based prediction framework offers a way to preserve the predictive power of advanced machine learning methods while enhancing our ability to generate insightful behavioral explanations, which is useful for enhancing situational awareness in user-centric transportation applications such as personalized traveler information.
翻译:个人流动是由对具有多种时空模式的活动的需求驱动的,但现有流动预测方法往往忽略了基本活动模式。为解决这一问题,本研究为个人流动预测开发了一个基于活动的模型框架。具体地说,提议了一个输入-输出隐藏的Markov模型(IOHMM)框架,以同时预测个人下次旅行的(持续)时间和(分辨)位置,使用中转智能卡数据。预测任务可以转变为预测隐藏的活动期限和结束地点。根据对香港地铁系统的案例研究,我们表明,拟议的模型可以实现类似于最先进的短期内存模型(LSTM)的类似预测性能。与LSTM不同的是,拟议的IOHMM模型也可以用来分析隐藏的活动模式,为个人为何进行某种旅行提供有意义的行为解释。因此,基于活动的预测框架提供了一种保存先进机器学习方法的预测力的方法,同时提高我们产生有洞察力的行为主义解释的能力,这对于提高个人旅行信息等以中心载式运输中的情况认识很有帮助。