Individual mobility is driven by demand for activities with diverse spatiotemporal patterns, but existing methods for mobility prediction often overlook the underlying activity patterns. To address this issue, this study develops an activity-based modeling framework for individual mobility prediction. Specifically, an input-output hidden Markov model (IOHMM) framework is proposed to simultaneously predict the (continuous) time and (discrete) location of an individual's next trip using transit smart card data. The prediction task can be transformed into predicting the hidden activity duration and end location. Based on a case study of Hong Kong's metro system, we show that the proposed model can achieve similar prediction performance as the state-of-the-art long short-term memory (LSTM) model. Unlike LSTM, the proposed IOHMM model can also be used to analyze hidden activity patterns, which provides meaningful behavioral interpretation for why an individual makes a certain trip. Therefore, the activity-based prediction framework offers a way to preserve the predictive power of advanced machine learning methods while enhancing our ability to generate insightful behavioral explanations, which is useful for enhancing situational awareness in user-centric transportation applications such as personalized traveler information.


翻译:个人流动是由对具有多种时空模式的活动的需求驱动的,但现有流动预测方法往往忽略了基本活动模式。为解决这一问题,本研究为个人流动预测开发了一个基于活动的模型框架。具体地说,提议了一个输入-输出隐藏的Markov模型(IOHMM)框架,以同时预测个人下次旅行的(持续)时间和(分辨)位置,使用中转智能卡数据。预测任务可以转变为预测隐藏的活动期限和结束地点。根据对香港地铁系统的案例研究,我们表明,拟议的模型可以实现类似于最先进的短期内存模型(LSTM)的类似预测性能。与LSTM不同的是,拟议的IOHMM模型也可以用来分析隐藏的活动模式,为个人为何进行某种旅行提供有意义的行为解释。因此,基于活动的预测框架提供了一种保存先进机器学习方法的预测力的方法,同时提高我们产生有洞察力的行为主义解释的能力,这对于提高个人旅行信息等以中心载式运输中的情况认识很有帮助。

1
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【KDD2020教程】多模态网络表示学习
专知会员服务
129+阅读 · 2020年8月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
An Agent-Based Modelling Approach to Brain Drain
Arxiv
0+阅读 · 2021年3月4日
ViZDoom Competitions: Playing Doom from Pixels
Arxiv
5+阅读 · 2018年9月10日
Arxiv
4+阅读 · 2017年11月13日
VIP会员
相关VIP内容
【KDD2020教程】多模态网络表示学习
专知会员服务
129+阅读 · 2020年8月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员