In this paper, we are interested in the problem of smoothing parameter selection in nonparametric curve estimation under dependent errors. We focus on kernel estimation and the case when the errors form a general stationary sequence of martingale difference random variables where neither linearity assumption nor "all moments are finite" are required.We compare the behaviors of the smoothing bandwidths obtained by minimizing either the unknown average squared error, the theoretical mean average squared error, a Mallows-type criterion adapted to the dependent case and the family of criteria known as generalized cross validation (GCV) extensions of the Mallows' criterion. We prove that these three minimizers and those based on the GCV family are first-order equivalent in probability. We give also a normal asymptotic behavior of the gap between the minimizer of the average square error and that of the Mallows-type criterion. This is extended to the GCV family.Finally, we apply our theoretical results to a specific case of martingale difference sequence, namely the Auto-Regressive Conditional Heteroscedastic (ARCH(1)) process.A Monte-carlo simulation study, for this regression model with ARCH(1) process, is conducted.
翻译:在本文中,我们关注在依赖性误差下非参数曲线估计中平滑参数选择的问题。 我们侧重于内核估计,当错误形成马丁格尔差异随机变量的一般固定序列时,既不需要线性假设,也不需要“所有时刻都是有限的”时,则侧重于内核估计和情况。 我们比较了通过尽量减少未知平均正方差、理论平均平均正方差、适用于依附性案例的马洛斯型标准,以及被称为马洛斯标准普遍交叉验证(GCV)扩展的一组标准获得的平滑带宽的行为。我们证明这三个最小化器和基于GCV家族的最小化器和那些最小化器在概率上是等同的。 我们还对平均正方差最小化器与Mallows型标准之间的空隙进行正常的静态行为。这被延伸至GCV家族。 最后,我们将我们的理论结果应用到一个特定的马洛斯标准序列,即自动递增临界(GCR(1))进程。A-Conter-carlo模拟了这一模型的回归研究。