Chandran et al. (SIAM J. Comput.'14) formally introduced the cryptographic task of position verification, where they also showed that it cannot be achieved by classical protocols. In this work, we initiate the study of position verification protocols with classical verifiers. We identify that proofs of quantumness (and thus computational assumptions) are necessary for such position verification protocols. For the other direction, we adapt the proof of quantumness protocol by Brakerski et al. (FOCS'18) to instantiate such a position verification protocol. As a result, we achieve classically verifiable position verification assuming the quantum hardness of Learning with Errors. Along the way, we develop the notion of 1-of-2 non-local soundness for the framework of 1-of-2 puzzles, first introduced by Radian and Sattath (AFT'19), which can be viewed as a computational unclonability property. We show that 1-of-2 non-local soundness follows from the standard 2-of-2 soundness, which could be of independent interest.


翻译:Chandran 等人(SIAM J.Compuut.''14)正式引入了定位核查的加密任务,其中它们也表明它无法通过古典协议实现。在这项工作中,我们开始与古典验证人研究定位核查协议。我们确定,对于这种定位核查协议来说,量度证据(因而是计算假设)是必要的。对于另一个方向,我们调整Brakerski等人(FOCS'18)的量度证明协议,以即刻执行这种位置核查协议。结果,我们实现了典型的可核查位置核查,假设学习与错误的量度硬度。与此同时,我们为1比2的拼图框架开发了1比2的非本地稳度概念,首先由Radian和Sattth(AFt'19)提出,可被视为计算不可计算的财产。我们表明,1比2的非本地声音来自于标准2的正确度,可能具有独立的兴趣。

0
下载
关闭预览

相关内容

专知会员服务
22+阅读 · 2021年4月10日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Python图像处理,366页pdf,Image Operators Image Processing in Python
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月9日
Arxiv
0+阅读 · 2021年11月9日
Arxiv
0+阅读 · 2021年11月9日
Arxiv
0+阅读 · 2021年11月5日
Arxiv
0+阅读 · 2021年11月5日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员