In the clinical setting of histopathology, whole-slide image (WSI) artifacts frequently arise, distorting regions of interest, and having a pernicious impact on WSI analysis. Image-to-image translation networks such as CycleGANs are in principle capable of learning an artifact removal function from unpaired data. However, we identify a surjection problem with artifact removal, and propose an weakly-supervised extension to CycleGAN to address this. We assemble a pan-cancer dataset comprising artifact and clean tiles from the TCGA database. Promising results highlight the soundness of our method.
翻译:在组织病理学临床环境中,经常出现全流图像(WSI)文物,扭曲感兴趣的区域,对WSI分析产生有害影响。图像到图像翻译网络,如CyclyGANs,原则上能够从未受重视的数据中学习文物清除功能。然而,我们找出了文物清除的先导问题,并提议对CypeGAN进行微弱监督的扩展,以解决这一问题。我们从TCGA数据库中收集了由文物和干净瓷砖组成的全扫描数据集。预感结果突出表明了我们方法的健全性。