A matching-cut of a graph is an edge cut that is a matching. The problem Matching-Cut is that of recognizing graphs with a matching-cut and is NP-complete, even if the graph belongs to one of a number of classes. We initiate the study of Matching-Cut for graphs without a fixed path as an induced subgraph. We show that Matching-Cut is in P for $P_5$-free graphs, but that there exists an integer $t > 0$ for which it is NP-complete for $P_{t}$-free graphs.
翻译:图形的匹配剪切是一个匹配的边端剪切。 匹配剪切的问题是识别带有匹配剪切的图形, 并且是NP- 完整, 即使该图形属于若干类中的一个。 我们开始研究没有固定路径的图形匹配剪切作为诱导子图。 我们显示匹配剪切在 P 中, $P_ 5$- free 图形, 但是存在一个整数 $t > 0$, 而对于 $P_ t} $free 图表来说, 它是 NP- complete 。