We present a meta-learning framework for interactive medical image registration. Our proposed framework comprises three components: a learning-based medical image registration algorithm, a form of user interaction that refines registration at inference, and a meta-learning protocol that learns a rapidly adaptable network initialization. This paper describes a specific algorithm that implements the registration, interaction and meta-learning protocol for our exemplar clinical application: registration of magnetic resonance (MR) imaging to interactively acquired, sparsely-sampled transrectal ultrasound (TRUS) images. Our approach obtains comparable registration error (4.26 mm) to the best-performing non-interactive learning-based 3D-to-3D method (3.97 mm) while requiring only a fraction of the data, and occurring in real-time during acquisition. Applying sparsely sampled data to non-interactive methods yields higher registration errors (6.26 mm), demonstrating the effectiveness of interactive MR-TRUS registration, which may be applied intraoperatively given the real-time nature of the adaptation process.
翻译:我们提出的框架由三部分组成:基于学习的医疗图像登记算法,一种在推论时改进注册的用户互动形式,以及一种学习快速适应网络初始化的元学习协议。本文描述了一种具体算法,用于执行登记、互动和元学习协议,用于我们的实验临床应用:将磁共振成像登记为互动获得的、很少采样的跨式超声波(TRUS)图像。我们的方法获得的登记错误(4.26毫米)与最佳的非互动学习3D-3D方法(3.97毫米)的可比,而只需要数据的一部分,在获取过程中实时发生。将稀有抽样数据应用于非互动方法,会产生较高的注册错误(6.26毫米),表明互动式MR-TRUS登记的有效性,鉴于适应进程的实时性质,这种登记可在内部应用。