Let $G=(V,E))$ be a directed graph. A $2$-twinless block in $G$ is a maximal vertex set $B\subseteq V$ of size at least $2$ such that for each pair of distinct vertices $x,y \in B$, and for each vertex $w\in V\setminus\left\lbrace x,y \right\rbrace $, the vertices $x,y$ are in the same twinless strongly connected component of $G\setminus\left \lbrace w \right\rbrace $. In this paper we present algorithms for computing the $2$-twinless blocks of a directed graph.
翻译:Let $G = (V, E) $( V, E) 是一个定向图表。$G$中一个$2的无双块是一个最大顶点设置 $B\ subseteque V$至少为$2美元,对于每对不同的顶点, $x, y\ in B$, 对于每对顶点, $w\ in V\ setminus\left\ lbrbrace x, y\right\rbrace $, y\right\rbroce $, right\rbrbrace, y $, 顶点为$G\setminus\left\ lbrbres w\rbrbrace $, 顶点是同一个无双对齐的双对齐部分。我们在此文件中提出计算方向图中两美元的无双方块的算法。