In a graph $G=(V,E)$, a module is a vertex subset $M$ of $V$ such that every vertex outside $M$ is adjacent to all or none of $M$. For example, $\emptyset$, $\{x\}$ $(x\in V )$ and $V$ are modules of $G$, called trivial modules. A graph, all the modules of which are trivial, is prime; otherwise, it is decomposable. A vertex $x$ of a prime graph $G$ is critical if $G - x$ is decomposable. Moreover, a prime graph with $k$ non-critical vertices is called $(-k)$-critical graph. A prime graph $G$ is $k$-minimal if there is some $k$-vertex set $X$ of vertices such that there is no proper induced subgraph of $G$ containing $X$ is prime. From this perspective, I. Boudabbous proposes to find the $(-k)$-critical graphs and $k$-minimal graphs for some integer $k$ even in a particular case of graphs. This research paper attempts to answer I. Boudabbous's question. First, it describes the $(-k)$-critical tree. As a corollary, we determine the number of nonisomorphic $(-k)$-critical tree with $n$ vertices where $k\in \{1,2,\lfloor\frac{n}{2}\rfloor\}$. Second, it provide a complete characterization of the $k$-minimal tree. As a corollary, we determine the number of nonisomorphic $k$-minimal tree with $n$ vertices where $k\leq 3$.
翻译:$G=( V, E) $, 一个模块是一个顶端的子集 $( 美元), 一个模块是一个顶端 $( 美元) 的 美元 。 这样, 美元以外的每个顶端均与美元相邻, 美元。 例如, $@x+$( 美元) 和 美元是 $G$ 的模块, 被称为小模块 。 一个所有模块都微不足道的图是质的; 否则, 它是可分解的 。 如果 $G - x 美元是可互不相容的, 那么, 美元以外的每个顶端的顶端都是$( 美元) 美元。 此外, 一个使用美元的非临界的顶端的顶端的顶端, 美元 美元 。 一个硬的G$G$( 美元), 一个硬的顶端的顶端值是 美元 。 一个直端的底座, 一个直径的直径直径的直径直径直值, 一个直径直的直的直数。