To manage the rumors in social media to reduce the harm of rumors in society. Many studies used methods of deep learning to detect rumors in open networks. To comprehensively sort out the research status of rumor detection from multiple perspectives, this paper analyzes the highly focused work from three perspectives: Feature Selection, Model Structure, and Research Methods. From the perspective of feature selection, we divide methods into content feature, social feature, and propagation structure feature of the rumors. Then, this work divides deep learning models of rumor detection into CNN, RNN, GNN, Transformer based on the model structure, which is convenient for comparison. Besides, this work summarizes 30 works into 7 rumor detection methods such as propagation trees, adversarial learning, cross-domain methods, multi-task learning, unsupervised and semi-supervised methods, based knowledge graph, and other methods for the first time. And compare the advantages of different methods to detect rumors. In addition, this review enumerate datasets available and discusses the potential issues and future work to help researchers advance the development of field.
翻译:为了管理社交媒体中的流言以减少流言在社会中的危害。 许多研究用深层次学习的方法在开放的网络中探测流言。 为了从多种角度全面划分流言探测的研究状况,本文件从三个角度分析了高度集中的工作: 特选、 模型结构和研究方法。 从特征选择的角度, 我们将方法分为流言的内容特征、 社会特征和传播结构特征。 然后, 这项工作将关于流言探测的深层次学习模式分为CNN、 RNN、 GNN、 以模型结构为基础、 便于比较的变异器。 此外, 这项工作将30个作品汇总为7种流言探测方法, 如传播树、 对抗性学习、 跨主题方法、 多任务学习、 不受监督和半监督的方法、 知识图表 以及首次采用的其他方法。 并比较不同方法探测流言的优势。 此外, 本审查还列举了可用的数据集, 并讨论了潜在问题和今后的工作, 以帮助研究人员推进实地开发。