To multiply astronomic matrices using parallel workers subject to straggling, we recommend interleaving checksums with some fast matrix multiplication algorithms. Nesting the parity-checked algorithms, we weave a product code flavor protection. Two demonstrative configurations are as follows: (A) $9$ workers multiply two $2\times 2$ matrices; each worker multiplies two linear combinations of entries therein. Then the entry products sent from any $8$ workers suffice to assemble the matrix product. (B) $754$ workers multiply two $9\times 9$ matrices. With empirical frequency $99.8\%$, $729$ workers suffice, wherein $729$ is the complexity of the schoolbook algorithm. In general, we propose probability-wisely favorable configurations whose numbers of workers are close to, if not less than, the thresholds of other codes (e.g., entangled polynomial code and PolyDot code). Our proposed scheme applies recursively, respects worker locality, incurs moderate pre- and post-processes, and extends over small finite fields.
翻译:使用平行的受拖累的工人来乘进天文学矩阵,我们建议使用一些快速矩阵倍增算法来将校验和校验和一些快速矩阵倍增算法进行交错。 套用经平价检查的算法,我们编织了一种产品代码调味保护。 两种示范性配置如下:(A) 9美元工人乘以2 $2 乘以2 $ 矩阵;每个工人乘以其中条目的两个线性组合。然后,从任何8美元工人发送的入门产品足以组装矩阵产品。 (B) 754美元工人乘以2 9 美元矩阵。用经验性频率99.8 $, 729美元工人就足够了,其中729美元是教科书的复杂程度。 一般来说,我们建议采用概率明智的有利配置,其工人人数接近,如果不少于其他代码的阈值(例如,缠绕的多诺米码和聚调道码) 。 我们提议的计划适用递归并、 尊重工人的地域, 产生中度前和后处理过程的中度, 并扩展到小片段。