Classical tests of goodness-of-fit aim to validate the conformity of a postulated model to the data under study. Given their inferential nature, they can be considered a crucial step in confirmatory data analysis. In their standard formulation, however, they do not allow exploring how the hypothesized model deviates from the truth nor do they provide any insight into how the rejected model could be improved to better fit the data. The main goal of this work is to establish a comprehensive framework for goodness-of-fit which naturally integrates modeling, estimation, inference, and graphics. Modeling and estimation focus on a novel formulation of smooth tests that easily extends to arbitrary distributions, either continuous or discrete. Inference and adequate post-selection adjustments are performed via a specially designed smoothed bootstrap and the results are summarized via an exhaustive graphical tool called CD-plot.


翻译:假定模型符合研究中的数据。考虑到其推论性质,可以认为这些模型是证实数据分析的关键步骤,但是,在标准拟订中,它们不允许探索假设模型如何偏离事实真相,也无法深入了解如何改进被否决的模型以更好地适应数据。这项工作的主要目标是建立一个关于良好模型的综合框架,它自然地将模型、估计、推论和图形结合起来。建模和估算的重点是易于连续或离散任意分布的光滑测试的新配方。通过一个专门设计的滑动式靴子陷阱进行推论和适当的选后调整,结果通过一个称为CD-plot的详尽的图形工具加以总结。

0
下载
关闭预览

相关内容

因果推断,Causal Inference:The Mixtape
专知会员服务
106+阅读 · 2021年8月27日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
5+阅读 · 2019年4月15日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2020年10月18日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
13+阅读 · 2019年11月14日
Graph Analysis and Graph Pooling in the Spatial Domain
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
5+阅读 · 2019年4月15日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员