A new method is used to resolve a long-standing conjecture of Niho concerning the crosscorrelation spectrum of a pair of maximum length linear recursive sequences of length $2^{2 m}-1$ with relative decimation $d=2^{m+2}-3$, where $m$ is even. The result indicates that there are only five possible crosscorrelation values. Equivalently, the result indicates that there are five possible values in the Walsh spectrum of the power permutation $f(x)=x^d$ over the finite field of order $2^{2 m}$ and five possible nonzero weights in the cyclic code of length $2^{2 m}-1$ with two primitive nonzeros $\alpha$ and $\alpha^d$. The method used to obtain this result proves constraints on the number of roots that certain seventh degree polynomials can have on the unit circle of a finite field. The method also works when $m$ is odd, in which case the associated crosscorrelation and Walsh spectra have only six possible values.
翻译:一种新方法用于解决Niho的长期猜想,该猜想涉及最长线性递归序列2 ⁇ 2m}-1美元(以美元=2 ⁇ 2m+2m}-3美元为单位)的两组最大线性递转序列的交叉关系频谱,其相对折合值为百万美元。结果显示,只有5种可能的交叉关系值。同样,结果显示,在沃尔什电源谱中,可能存在5种数值(美元(x)=x=xd$),高于2 ⁇ 2m}美元(以美元计算)和2 ⁇ 2m}-1美元的周期代码中5种可能的非零加权,其值为2美元(美元)和1美元(以美元计算)为单位非零。获得这一结果所使用的方法证明,某些七度的多元数值对有限域单位圆的根数存在限制。当美元为奇数时,这种方法也起作用,在这种情况下,相关的交叉关系和沃尔斯光谱只有6种可能值。