Knowledgeable FAQ chatbots are a valuable resource to any organization. Unlike traditional call centers or FAQ web pages, they provide instant responses and are always available. Our experience running a COVID19 chatbot revealed the lack of resources available for FAQ answering in non-English languages. While powerful and efficient retrieval-based models exist for English, it is rarely the case for other languages which do not have the same amount of training data available. In this work, we propose a novel pretaining procedure to adapt ConveRT, an English SOTA conversational agent, to other languages with less training data available. We apply it for the first time to the task of Dutch FAQ answering related to the COVID19 vaccine. We show it performs better than an open-source alternative in a low-data regime and high-data regime.


翻译:与传统的呼叫中心或常见聊天室网页不同,我们使用COVID19聊天室的经验显示,对于以非英语回答常见问题来说,缺乏资源。虽然英语有强大而高效的检索模型,但其他语言没有同等数量的培训数据,却很少出现这种模式。在这项工作中,我们建议采用新的预设程序,使ConveRT(英语SOTA交谈代理)适应培训数据较少的其他语言。我们第一次将它应用到荷兰常见聊天室与COVID19疫苗有关的答复中。我们在低数据制度和高数据制度中,表现优于开放源替代方法。

1
下载
关闭预览

相关内容

Chatbot,聊天机器人。 chatbot是场交互革命,也是一个多技术融合的平台。上图给出了构建一个chatbot需要具备的组件,简单地说chatbot = NLU(Natural Language Understanding) + NLG(Natural Language Generation)。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
【文本匹配】Question Answering论文
深度学习自然语言处理
8+阅读 · 2020年4月20日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
基于RASA的task-orient对话系统解析(一)
AINLP
16+阅读 · 2019年8月27日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【小夕精选】多轮对话之对话管理(Dialog Management)
夕小瑶的卖萌屋
27+阅读 · 2018年10月14日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Neural Approaches to Conversational AI
Arxiv
8+阅读 · 2018年12月13日
CoQA: A Conversational Question Answering Challenge
Arxiv
7+阅读 · 2018年8月21日
Arxiv
6+阅读 · 2018年4月21日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Top
微信扫码咨询专知VIP会员