In this paper we combine an approach based on Runge-Kutta Nets considered in [\emph{Benning et al., J. Comput. Dynamics, 9, 2019}] and a technique on augmenting the input space in [\emph{Dupont et al., NeurIPS}, 2019] to obtain network architectures which show a better numerical performance for deep neural networks in point classification problems. The approach is illustrated with several examples implemented in PyTorch.
翻译:在本文中,我们根据[hemph{Benning 等人,J.Comput. Dynamications, 9, 2019}]中考虑的龙格-库塔网络采用的方法与扩大[emph{Dupont 等人, NeurIPS}, 2019] 输入空间的技术相结合,以获得网络结构,这些网络结构在点分类问题上显示深神经网络更好的数字性能。在PyTorch实施的几个实例中说明了这一方法。