Understanding the processes of perovskite crystallization is essential for improving the properties of organic solar cells. In situ real-time grazing-incidence X-ray diffraction (GIXD) is a key technique for this task, but it produces large amounts of data, frequently exceeding the capabilities of traditional data processing methods. We propose an automated pipeline for the analysis of GIXD images, based on the Faster R-CNN deep learning architecture for object detection, modified to conform to the specifics of the scattering data. The model exhibits high accuracy in detecting diffraction features on noisy patterns with various experimental artifacts. We demonstrate our method on real-time tracking of organic-inorganic perovskite structure crystallization and test it on two applications: 1. the automated phase identification and unit-cell determination of two coexisting phases of Ruddlesden-Popper 2D perovskites, and 2. the fast tracking of MAPbI$_3$ perovskite formation. By design, our approach is equally suitable for other crystalline thin-film materials.
翻译:了解千草枯晶化过程对于改善有机太阳能电池的特性至关重要。现场实时放牧X射线分解(GIXD)是这项任务的关键技术之一,但它产生大量数据,常常超过传统数据处理方法的能力。我们提议在更快的R-CNN物体探测深层学习结构的基础上,为分析GIXD图像而建立一个自动管道,以根据散射数据的具体细节加以修改。模型显示在发现与各种实验文物的噪音模式的分解特征方面非常精确。我们展示了我们实时跟踪有机无机透氧结构结晶化的方法,并在两种应用上进行测试:1. 自动阶段识别和单细胞确定Luddlesden-Popper 2Dperovskites的两个共存阶段,和2. 快速跟踪MAPBI$_3美元perovskite形成。通过设计,我们的方法同样适用于其他晶体薄膜材料。