In the 1970s, Gy\H{o}ri and Lov\'{a}sz showed that for a $k$-connected $n$-vertex graph, a given set of terminal vertices $t_1, \dots, t_k$ and natural numbers $n_1, \dots, n_k$ satisfying $\sum_{i=1}^{k} n_i = n$, a connected vertex partition $S_1, \dots, S_k$ satisfying $t_i \in S_i$ and $|S_i| = n_i$ exists. However, polynomial algorithms to actually compute such partitions are known so far only for $k \leq 4$. This motivates us to take a new approach and constrain this problem to particular graph classes instead of restricting the values of $k$. More precisely, we consider $k$-connected chordal graphs and a broader class of graphs related to them. For the first, we give an algorithm with $O(n^2)$ running time that solves the problem exactly, and for the second, an algorithm with $O(n^4)$ running time that deviates on at most one vertex from the given required vertex partition sizes.
翻译:在20世纪70年代,Györi和Lovász证明了对于一个$k$连通的$n$个顶点的图,一个给定的端点集$t_1, \dots, t_k$和自然数$n_1, \dots, n_k$,满足$\sum_{i=1}^{k} n_i = n$,存在一个连通顶点划分$S_1, \dots, S_k$,满足$t_i \in S_i$和$|S_i| = n_i$。然而,计算这样的分区的多项式算法目前只针对$k \leq 4$。这促使我们采取一种新的方法,将这个问题限制在特定的图类上,而不是限制$k$的值。更确切地说,我们考虑$k$连通弦图和与其相关的更广泛的图类。对于前者,我们提出了一个$O(n^2)$运行时间的算法,可以精确地解决该问题,对于后者,我们提出了一个$O(n^4)$运行时间的算法,与给定的所需的顶点划分大小最多只有一个定点偏差。