Data science workflows are human-centered processes involving on-demand programming and analysis. While programmable and interactive interfaces such as widgets embedded within computational notebooks are suitable for these workflows, they lack robust state management capabilities and do not support user-defined customization of the interactive components. The absence of such capabilities hinders workflow reusability and transparency while limiting the scope of exploration of the end-users. In response, we developed MAGNETON, a framework for authoring interactive widgets within computational notebooks that enables transparent, reusable, and customizable data science workflows. The framework enhances existing widgets to support fine-grained interaction history management, reusable states, and user-defined customizations. We conducted three case studies in a real-world knowledge graph construction and serving platform to evaluate the effectiveness of these widgets. Based on the observations, we discuss future implications of employing MAGNETON widgets for general-purpose data science workflows.


翻译:数据科学工作流是以人为中心的、按需编程和分析的过程。虽然嵌入在计算笔记本中的可编程和交互式界面(如微件)适用于这些工作流,但它们缺乏强大的状态管理功能,并且不支持用户定义的交互组件定制。缺乏这些能力会阻碍工作流程的重用和透明度,同时限制最终用户的探索范围。为此,我们开发了MAGNETON框架,用于在计算笔记本中编写交互式微件,以实现数据科学工作流程的透明、可重用和可定制性。该框架增强了现有微件的功能,支持精细的交互历史管理、可重用状态和用户定义的定制。我们在真实的知识图构建和服务平台中进行了三个案例研究,以评估这些微件的有效性。基于观察结果,我们讨论了采用MAGNETON微件用于通用数据科学工作流程的未来影响。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
126+阅读 · 2023年1月29日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
使用 Keras Tuner 调节超参数
TensorFlow
15+阅读 · 2020年2月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月12日
Arxiv
0+阅读 · 2023年5月12日
Arxiv
0+阅读 · 2023年5月12日
VIP会员
相关VIP内容
【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
126+阅读 · 2023年1月29日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
使用 Keras Tuner 调节超参数
TensorFlow
15+阅读 · 2020年2月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员