When a camera is pointed at a strong light source, the resulting photograph may contain lens flare artifacts. Flares appear in a wide variety of patterns (halos, streaks, color bleeding, haze, etc.) and this diversity in appearance makes flare removal challenging. Existing analytical solutions make strong assumptions about the artifact's geometry or brightness, and therefore only work well on a small subset of flares. Machine learning techniques have shown success in removing other types of artifacts, like reflections, but have not been widely applied to flare removal due to the lack of training data. To solve this problem, we explicitly model the optical causes of flare either empirically or using wave optics, and generate semi-synthetic pairs of flare-corrupted and clean images. This enables us to train neural networks to remove lens flare for the first time. Experiments show our data synthesis approach is critical for accurate flare removal, and that models trained with our technique generalize well to real lens flares across different scenes, lighting conditions, and cameras.
翻译:当照相机指向强光源时,所产生的照片可能包含闪光耀斑制品。火焰出现在各种各样的模式中(卤、线、色出、烟雾等),而这种多样性在外观中使得耀斑的清除具有挑战性。现有的分析解决方案对文物的几何或亮度做出了强烈的假设,因此只能对少量的耀斑产生良好的效果。机器学习技术在清除其他类型的文物(如反射)方面表现出成功,但由于缺乏培训数据,照明弹的清除没有被广泛应用。为了解决这一问题,我们明确模拟耀斑的光学原因,或者用实证方式,或者使用波光学光学仪器,并生成照明弹和清洁图像的半合成配对。这使我们能够训练神经网络,以便首次去除闪光耀。实验表明我们的数据合成方法对于准确清除照明弹至关重要,并且通过我们的技术培训模型能够对不同场景、照明条件和照相机的真正闪光照明弹进行全面的培训。