Neural networks are vulnerable to adversarial attacks: adding well-crafted, imperceptible perturbations to their input can modify their output. Adversarial training is one of the most effective approaches in training robust models against such attacks. However, it is much slower than vanilla training of neural networks since it needs to construct adversarial examples for the entire training data at every iteration, which has hampered its effectiveness. Recently, Fast Adversarial Training was proposed that can obtain robust models efficiently. However, the reasons behind its success are not fully understood, and more importantly, it can only train robust models for $\ell_\infty$-bounded attacks as it uses FGSM during training. In this paper, by leveraging the theory of coreset selection we show how selecting a small subset of training data provides a more principled approach towards reducing the time complexity of robust training. Unlike existing methods, our approach can be adapted to a wide variety of training objectives, including TRADES, $\ell_p$-PGD, and Perceptual Adversarial Training. Our experimental results indicate that our approach speeds up adversarial training by 2-3 times, while experiencing a small reduction in the clean and robust accuracy.


翻译:神经网络很容易受到对抗性攻击:增加精心设计的、无法察觉的干扰,其投入可以改变其产出。反向培训是培训抵御这类攻击的强大模型的最有效方法之一。然而,它比神经网络的香草培训要慢得多,因为它需要在每个迭代中为整个培训数据建立对抗性实例,这妨碍了其效力。最近,提出了快速反向培训,能够有效地获得稳健模型。然而,其成功的原因尚未得到充分理解,更重要的是,它只能为在培训中使用FGSM时使用$\ ⁇ infty$受约束的攻击培训,而这种培训是最有效的方法。在本文中,通过利用核心选择理论,我们展示了如何选择少量的培训数据为减少强力培训的复杂时间提供更具原则性的方法。与现有的方法不同,我们的方法可以适应广泛的培训目标,包括TraiceS、$\ell_p$_p$-PGGD和概念性反向培训。我们的实验结果表明,我们的方法在小规模的削减过程中,在2-3次的简单减少中,其精确性培训的速度会加快。

0
下载
关闭预览

相关内容

【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
126+阅读 · 2021年6月4日
专知会员服务
49+阅读 · 2021年4月24日
专知会员服务
45+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
7+阅读 · 2018年6月8日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员