We consider a regression modeling of the quantiles of residual life, remaining lifetime at a specific time. We propose a smoothed induced version of the existing non-smooth estimating equations approaches for estimating regression parameters. The proposed estimating equations are smooth in regression parameters, so solutions can be readily obtained via standard numerical algorithms. Moreover, the smoothness in the proposed estimating equations enables one to obtain a robust sandwich-type covariance estimator of regression estimators aided by an efficient resampling method. To handle data subject to right censoring, the inverse probability of censoring weight are used as weights. The consistency and asymptotic normality of the proposed estimator are established. Extensive simulation studies are conducted to validate the proposed estimator's performance in various finite samples settings. We apply the proposed method to dental study data evaluating the longevity of dental restorations.
翻译:我们考虑在特定时间对剩余生命、剩余寿命的数组进行回归模型,我们建议对现有非平稳估计方程法进行平滑的引导版,以估计回归参数。提议的估算方程在回归参数中是平滑的,因此可以通过标准数字算法很容易获得解决方案。此外,拟议的估算方程的顺畅使得人们能够获得一个强有力的三明治型共变量测算器,并辅之以有效的再抽样方法。为了处理受右侧审查的数据,审查权重的反概率被用作重量。拟议估算方程的一致性和无损正常性得到确立。进行了广泛的模拟研究,以验证提议的估算方在各种特定样本环境中的性能。我们采用拟议方法对评估牙科修复寿命的数据进行研究。