We give a sketching-based iterative algorithm that computes a $1+\varepsilon$ approximate solution for the ridge regression problem $\min_x \|Ax-b\|_2^2 +\lambda\|x\|_2^2$ where $A \in R^{n \times d}$ with $d \ge n$. Our algorithm, for a constant number of iterations (requiring a constant number of passes over the input), improves upon earlier work (Chowdhury et al.) by requiring that the sketching matrix only has a weaker Approximate Matrix Multiplication (AMM) guarantee that depends on $\varepsilon$, along with a constant subspace embedding guarantee. The earlier work instead requires that the sketching matrix has a subspace embedding guarantee that depends on $\varepsilon$. For example, to produce a $1+\varepsilon$ approximate solution in $1$ iteration, which requires $2$ passes over the input, our algorithm requires the OSNAP embedding to have $m= O(n\sigma^2/\lambda\varepsilon)$ rows with a sparsity parameter $s = O(\log(n))$, whereas the earlier algorithm of Chowdhury et al. with the same number of rows of OSNAP requires a sparsity $s = O(\sqrt{\sigma^2/\lambda\varepsilon} \cdot \log(n))$, where $\sigma = \opnorm{A}$ is the spectral norm of the matrix $A$. We also show that this algorithm can be used to give faster algorithms for kernel ridge regression. Finally, we show that the sketch size required for our algorithm is essentially optimal for a natural framework of algorithms for ridge regression by proving lower bounds on oblivious sketching matrices for AMM. The sketch size lower bounds for AMM may be of independent interest.


翻译:我们给出一个基于素描的迭代算法, 计算一个1美元瓦雷普西隆的近似解决方案, 用于山脊回归问题 $\ min_ x $Ax- b ⁇ 2 ⁇ 2 ⁇ 2 ⁇ 2 ⁇ lambda ⁇ x ⁇ 2 ⁇ 2 ⁇ 2美元, 其中美元A=n R ⁇ n\ time d}$d 美元美元。 我们的算法, 对于一个固定的迭代数( 需要输入一个固定的传译次数), 改进早先的工作( cowdhury et al.), 要求草图矩阵只拥有一个较弱的Aprobl 缩缩缩缩缩数 (AMM) 的保证, 而早期的工作则要求草图矩阵有一个子空间嵌入保证, $qureqr=alepal limals a masserational exeration (我们需要2n\\\\\\\\\\\\\\ diral direx li) a mass lial deal deal deal deal deal demoal deal smax slations exmission a.

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
162+阅读 · 2020年1月16日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
相关资讯
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员