Advancing the utility of social media data for research applications requires methods for automatically detecting demographic information about social media study populations, including users' age. The objective of this study was to develop and evaluate a method that automatically identifies the exact age of users based on self-reports in their tweets. Our end-to-end automatic natural language processing (NLP) pipeline, ReportAGE, includes query patterns to retrieve tweets that potentially mention an age, a classifier to distinguish retrieved tweets that self-report the user's exact age ("age" tweets) and those that do not ("no age" tweets), and rule-based extraction to identify the age. To develop and evaluate ReportAGE, we manually annotated 11,000 tweets that matched the query patterns. Based on 1000 tweets that were annotated by all five annotators, inter-annotator agreement (Fleiss' kappa) was 0.80 for distinguishing "age" and "no age" tweets, and 0.95 for identifying the exact age among the "age" tweets on which the annotators agreed. A deep neural network classifier, based on a RoBERTa-Large pretrained model, achieved the highest F1-score of 0.914 (precision = 0.905, recall = 0.942) for the "age" class. When the age extraction was evaluated using the classifier's predictions, it achieved an F1-score of 0.855 (precision = 0.805, recall = 0.914) for the "age" class. When it was evaluated directly on the held-out test set, it achieved an F1-score of 0.931 (precision = 0.873, recall = 0.998) for the "age" class. We deployed ReportAGE on more than 1.2 billion tweets posted by 245,927 users, and predicted ages for 132,637 (54%) of them. Scaling the detection of exact age to this large number of users can advance the utility of social media data for research applications that do not align with the predefined age groupings of extant binary or multi-class classification approaches.


翻译:提高社交媒体数据对研究应用的效用,需要使用各种方法自动检测关于社交媒体研究人口的人口信息,包括用户年龄。本研究的目的是开发和评价一种方法,根据在推特中的自我报告自动确定用户的确切年龄。我们的端到端自动自然语言处理管道,ReportAGE, 包括检索可能提到年龄的推文的查询模式, 用来区分自报用户准确年龄("年龄"推文)和不自报("不年龄"推文)的推文, 以及用于识别年龄的基于规则的提取方法。 为了直接开发和评估“ReportAGAGAGE ”, 我们手动了11 000个与查询模式模式模式匹配的推文。 根据所有5个注解者加注的1000个推文, 内部公告协议(Fleys'kappappa), 用于分辨“年龄”和“没有年龄”的推文推文, 用于识别“年龄”的推文的推文的推文, 和“年龄”的推文中经评的推文数,经批同意的推算“年龄”。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
生成式对抗网络GAN异常检测
专知会员服务
116+阅读 · 2019年10月13日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【电子书推荐】Data Science with Python and Dask
专知会员服务
43+阅读 · 2019年6月1日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Arxiv
6+阅读 · 2019年9月4日
Arxiv
6+阅读 · 2019年3月19日
Arxiv
4+阅读 · 2019年1月1日
Arxiv
5+阅读 · 2015年9月14日
VIP会员
相关资讯
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Top
微信扫码咨询专知VIP会员