We present a learning-based channel-adaptive joint source and channel coding (CA-JSCC) scheme for wireless image transmission over multipath fading channels. The proposed method is an end-to-end autoencoder architecture with a dual-attention mechanism employing orthogonal frequency division multiplexing (OFDM) transmission. Unlike the previous works, our approach is adaptive to channel-gain and noise-power variations by exploiting the estimated channel state information (CSI). Specifically, with the proposed dual-attention mechanism, our model can learn to map the features and allocate transmission-power resources judiciously based on the estimated CSI. Extensive numerical experiments verify that CA-JSCC achieves state-of-the-art performance among existing JSCC schemes. In addition, CA-JSCC is robust to varying channel conditions and can better exploit the limited channel resources by transmitting critical features over better subchannels.
翻译:我们提出了一个基于学习的频道适应性联合源码和频道编码(CA-JSCC)计划,用于在多路淡化的频道上进行无线图像传输。拟议方法是一个终端到终端自动编码结构,其双重注意机制使用正方位频率分多路传输(OFDM)传输(OFDM ) 。与以前的工作不同,我们的方法是利用估计的频道状态信息(CSI ), 适应频道增益和噪声力变化。具体地说,我们的模式可以利用拟议的双轨机制,学习根据CSI估计值绘制功能图,明智地分配传输能力资源。广泛的数字实验证实CAA-JSCC在现有的JSCC计划中取得了最新业绩。 此外,CA-JSCC对不同的频道条件非常强大,并且可以通过更好的子通道传输关键特征,更好地利用有限的频道资源。