We present a learning-based channel-adaptive joint source and channel coding (CA-JSCC) scheme for wireless image transmission over multipath fading channels. The proposed method is an end-to-end autoencoder architecture with a dual-attention mechanism employing orthogonal frequency division multiplexing (OFDM) transmission. Unlike the previous works, our approach is adaptive to channel-gain and noise-power variations by exploiting the estimated channel state information (CSI). Specifically, with the proposed dual-attention mechanism, our model can learn to map the features and allocate transmission-power resources judiciously based on the estimated CSI. Extensive numerical experiments verify that CA-JSCC achieves state-of-the-art performance among existing JSCC schemes. In addition, CA-JSCC is robust to varying channel conditions and can better exploit the limited channel resources by transmitting critical features over better subchannels.


翻译:我们提出了一个基于学习的频道适应性联合源码和频道编码(CA-JSCC)计划,用于在多路淡化的频道上进行无线图像传输。拟议方法是一个终端到终端自动编码结构,其双重注意机制使用正方位频率分多路传输(OFDM)传输(OFDM ) 。与以前的工作不同,我们的方法是利用估计的频道状态信息(CSI ), 适应频道增益和噪声力变化。具体地说,我们的模式可以利用拟议的双轨机制,学习根据CSI估计值绘制功能图,明智地分配传输能力资源。广泛的数字实验证实CAA-JSCC在现有的JSCC计划中取得了最新业绩。 此外,CA-JSCC对不同的频道条件非常强大,并且可以通过更好的子通道传输关键特征,更好地利用有限的频道资源。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
22篇论文!增量学习/终生学习论文资源列表
专知
32+阅读 · 2018年12月27日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月24日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员