Recently, flood damage has become a social problem owing to unexperienced weather conditions arising from climate change. An immediate response to heavy rain is important for the mitigation of economic losses and also for rapid recovery. Spatiotemporal precipitation forecasts may enhance the accuracy of dam inflow prediction, more than 6 hours forward for flood damage mitigation. However, the ordinary ConvLSTM has the limitation of predictable range more than 3-timesteps in real-world precipitation forecasting owing to the irreducible bias between target prediction and ground-truth value. This paper proposes a rain-code approach for spatiotemporal precipitation code-to-code forecasting. We propose a novel rainy feature that represents a temporal rainy process using multi-frame fusion for the timestep reduction. We perform rain-code studies with various term ranges based on the standard ConvLSTM. We applied to a dam region within the Japanese rainy term hourly precipitation data, under 2006 to 2019 approximately 127 thousands hours, every year from May to October. We apply the radar analysis hourly data on the central broader region with an area of 136 x 148 km2 . Finally we have provided sensitivity studies between the rain-code size and hourly accuracy within the several forecasting range.
翻译:最近,由于气候变化引起的天气条件缺乏经验,洪水损害已成为一个社会问题。对大雨的立即反应对于减轻经济损失和迅速恢复非常重要。对时降雨量的预测可能会提高大坝流入预测的准确性,在减轻洪水损害方面要提前6小时以上。然而,普通的ConvLSTM在实际世界降雨量预测方面限制的可预见范围超过3个步骤,因为目标预测与地面真实值之间的偏差是不可降低的。本文建议对地表阵雨量降水代码到代码的预报采用雨水代码方法。我们提出了一个新颖的雨季特征,它代表一个使用多框架混合时间来缩短时间的雨季过程。我们根据ConvLSTM标准进行不同术语范围的雨码研究。我们从5月至10月每年对日本雨季时降水量数据中的水坝区域应用2006年至2019 000小时,大约为127 000小时。我们对中部地区的雷达分析小时数据应用了136x148平方公里的区域。最后,我们提供了雨轨距数的精确度。我们提供了降雨量预测范围与每小时的精确度之间的敏感性研究。