Purpose. We present an approach for forecasting mental health conditions and emotions of a given population during the COVID-19 pandemic based on language expressions used in social media. This approach permits anticipating high prevalence periods in short- to medium-term time horizons. Design. Mental health conditions and emotions are captured via markers, which link social media contents with lexicons. First, we build descriptive timelines for decision makers to monitor the evolution of markers, and their correlation with crisis events. Second, we model the timelines as time series, and support their forecasting, which in turn serve to identify high prevalence points for the estimated markers. Findings. Results showed that different time series forecasting strategies offer different capabilities. In the best scenario, the emergence of high prevalence periods of emotions and mental health disorders can be satisfactorily predicted with a neural network strategy, even when limited data is available in early stages of a crisis (e.g., 7 days). Originality. Although there have been efforts in the literature to predict mental states of individuals, the analysis of mental health at the collective level has received scarce attention. We take a step forward by proposing a forecasting approach for analyzing the mental health of a given population (or group of individuals) at a larger scale. Practical implications. We believe that this work contributes to a better understanding of how psychological processes related to crisis manifest in social media, being a valuable asset for the design, implementation and monitoring of health prevention and communication policies.


翻译:目的:我们根据社交媒体使用的语言表达方式,提出在COVID-19大流行期间预测特定人群心理健康状况和情绪的方法;这一方法可以预测短期至中期时间范围内的高流行率时期;设计;通过标志捕捉心理健康状况和情绪,将社交媒体内容与词汇系统联系起来。第一,我们为决策者制定描述性时间表,以监测标记的演变及其与危机事件的相关性。第二,我们把时间序列作为时间序列,并支持其预测,这反过来有助于为估计标记确定高流行率点。调查结果显示,不同的时间序列预测战略提供不同的能力。在最佳情况下,情绪和心理健康失调高流行率时期的出现可以通过神经网络战略得到令人满意的预测,即使危机早期阶段(例如,7天)有有限的数据可用。原始情况。尽管在文献中作出了预测个人心理状态的努力,但在集体一级对心理健康的分析却很少受到注意。我们向前迈出了一步,提出了一种预测方法,用以分析心理健康、情绪和心理健康失调的流行期,从而使人们更深刻地了解与人口有关的实际健康影响。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Arxiv
15+阅读 · 2021年2月19日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Top
微信扫码咨询专知VIP会员