We propose a generalization of the synthetic controls and synthetic interventions methodology to incorporate network interference. We consider the estimation of unit-specific treatment effects from panel data where there are spillover effects across units and in the presence of unobserved confounding. Key to our approach is a novel latent factor model that takes into account network interference and generalizes the factor models typically used in panel data settings. We propose an estimator, "network synthetic interventions", and show that it consistently estimates the mean outcomes for a unit under an arbitrary sequence of treatments for itself and its neighborhood, given certain observation patterns hold in the data. We corroborate our theoretical findings with simulations.
翻译:我们建议对合成控制和合成干预方法进行概括化,以纳入网络干扰。我们考虑从小组数据中估算特定单位的处理效果,如果小组数据出现跨单位的溢出效应,并且存在未观察到的混乱。我们的方法的关键是一个新颖的潜在要素模型,它考虑到网络干扰,并概括了小组数据设置中通常使用的因素模型。我们建议了一个估算器,即“网络合成干预 ”, 并表明,鉴于数据中存在某些观察模式,它始终如一地根据任意的治疗顺序为自己及其邻居估计一个单位的平均结果。我们用模拟来证实我们的理论结论。