Multi-object tracking and segmentation (MOTS) is a critical task for autonomous driving applications. The existing MOTS studies face two critical challenges: 1) the published datasets inadequately capture the real-world complexity for network training to address various driving settings; 2) the working pipeline annotation tool is under-studied in the literature to improve the quality of MOTS learning examples. In this work, we introduce the DG-Labeler and DGL-MOTS dataset to facilitate the training data annotation for the MOTS task and accordingly improve network training accuracy and efficiency. DG-Labeler uses the novel Depth-Granularity Module to depict the instance spatial relations and produce fine-grained instance masks. Annotated by DG-Labeler, our DGL-MOTS dataset exceeds the prior effort (i.e., KITTI MOTS and BDD100K) in data diversity, annotation quality, and temporal representations. Results on extensive cross-dataset evaluations indicate significant performance improvements for several state-of-the-art methods trained on our DGL-MOTS dataset. We believe our DGL-MOTS Dataset and DG-Labeler hold the valuable potential to boost the visual perception of future transportation.
翻译:多点跟踪和分解是自主驾驶应用的一项关键任务。现有的多点跟踪和分解(MOTS)研究面临两个重大挑战:(1) 公布的数据集没有充分捕捉到网络培训在应对各种驾驶环境方面的真实世界复杂性;(2) 正在运行的管道批注工具在文献中研究不足,以提高MOTS学习实例的质量。在这项工作中,我们引入DG-Labeler和DGL-MOTS数据集,以便利对MOTS任务的培训数据进行说明,并相应提高网络培训的准确性和效率。DG-Labeler使用新的深度-Granulality模块描述实例空间关系,并制作精细微的图像面罩。DG-Labeler作了说明,我们的DGL-MOTS数据集超过了先前在数据多样性、说明质量和时间分布方面所做的努力(即KITTI MSTS和BDD100K)。广泛的交叉数据集评估结果表明,在DGL-MO数据定位上培训的几种状态方法取得了显著的绩效改进。我们相信,我们的DG-DG-DG-DG-DMS的未来动力。