Agricultural image recognition tasks are becoming increasingly dependent on deep learning (DL). Despite its excellent performance, it is difficult to comprehend what type of logic or features DL uses in its decision making. This has become a roadblock for the implementation and development of DL-based image recognition methods because knowing the logic or features used in decision making, such as in a classification task, is very important for verification, algorithm improvement, training data improvement, knowledge extraction, etc. To mitigate such problems, we developed a classification method based on a variational autoencoder architecture that can show not only the location of the most important features but also what variations of that particular feature are used. Using the PlantVillage dataset, we achieved an acceptable level of explainability without sacrificing the accuracy of the classification. Although the proposed method was tested for disease diagnosis in some crops, the method can be extended to other crops as well as other image classification tasks. In the future, we hope to use this explainable artificial intelligence algorithm in disease identification tasks, such as the identification of potato blackleg disease and potato virus Y (PVY), and other image classification tasks.


翻译:农业形象识别任务日益依赖深层学习(DL)。尽管表现出色,但很难理解DL在决策中使用哪种逻辑或特征。这已成为基于DL的图像识别方法的执行和发展的障碍,因为了解决策中所使用的逻辑或特征,例如分类任务,对于核查、算法改进、培训数据改进、知识提取等非常重要。为了减轻这些问题,我们开发了一种基于变式自动编码结构的分类方法,不仅能够显示最重要的特征的位置,而且能够显示该特征的变异性。我们利用植物植被数据集,在不牺牲分类准确性的情况下,实现了可接受的解释程度。虽然对一些作物的疾病诊断进行了测试,但该方法可以推广到其他作物以及其他图像分类任务。今后,我们希望在疾病识别任务中使用这种可以解释的人工智能算法,例如查明土豆黑腿病和马铃薯病毒Y(PVY)以及其他图像分类任务。

0
下载
关闭预览

相关内容

自动编码器是一种人工神经网络,用于以无监督的方式学习有效的数据编码。自动编码器的目的是通过训练网络忽略信号“噪声”来学习一组数据的表示(编码),通常用于降维。与简化方面一起,学习了重构方面,在此,自动编码器尝试从简化编码中生成尽可能接近其原始输入的表示形式,从而得到其名称。基本模型存在几种变体,其目的是迫使学习的输入表示形式具有有用的属性。自动编码器可有效地解决许多应用问题,从面部识别到获取单词的语义。
专知会员服务
44+阅读 · 2020年10月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Arxiv
12+阅读 · 2019年3月14日
q-Space Novelty Detection with Variational Autoencoders
Arxiv
6+阅读 · 2018年1月29日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Top
微信扫码咨询专知VIP会员